LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2011

PH 3812 - NUMERICAL METHODS AND C PROGRAMMING

Date: 04-11-2011
Time : 9:00-12:00

Dept. No.

\square Max. : 100 Marks

PART - A

Answer ALL the questions
(10 X $2=20$)

1. What is the use of comma operator in C ?
2. Describe the various logical operators in C .
3. Give the general format of "structure".
4. What are the data types available in C ?
5. State the syntax for opening and closing a file.
6. Explain the use of typedef () function.
7. Distinguish between break and continue statements in C.
8. Determine the approximate root of $x^{3}-3 x+1=0$.
9. Calculate $\int_{2}^{10} \frac{d x}{(1+x)}$ by dividing the range into eight equal parts, using Simpson's $1 / 3^{\text {rd }}$ rule.
10. Define a recursive function.

PART - B

Answer any FOUR questions
11. Solve the following systems of equations by Gauss-Jordan method.

$$
x+2 y+z=8 ; \quad 2 x+3 y+4 z=20 ; \quad 4 x+3 y+2 z=16
$$

12. Use Lagrange interpolation formula, to find $f(10)$, given that $f(5)=12, f(6)=13, f(9)=14$, and $f(11)=16$.
13. Solve $y^{\prime}=x^{2}+y$, with initial condition $y(0)=0.94$,using Euler's modified method, and find $y(0.1)$.
14. Write a C program to check the given string is Palindrome or not.
15. Write a program in C to perform the basic arithmetic operations using switch -case.

PART - C

Answer any FOUR questions
$(4 \times 12.5=50)$
16. Develop a C program to multiply two 3×3 matrices.
17. Write a program in C to solve a second order differential equation using the fourth order Runge-Kutta method.
18. Develop C programs to,
i) generate the Fibonacci series,
ii) find the greatest of three numbers.
19. Find the root of equation $x^{5}-x^{4}-x^{3}-1=0$ by Regula-falsi method.
20. Using Newton's divided difference formula, find the value of $f(8)$ and $f(15)$ from the following table.

\mathbf{x}	4	5	7	10	11	13
$\mathbf{f (x)}$	48	100	294	900	1210	2028

